E**≣≋**₹S

Journal of the European Ceramic Society 20 (2000) 747-749

Effect of Al₂O₃ on the microstructure and electrical properties of WO₃-based varistor ceramics

V.O. Makarov^{a,*}, M. Trontelj^b

^aUniversity of Dnepropetrovsk, Gagarina 72, 320625 Dnepropetrovsk, Ukraine ^bJ. Stefan Institute, University of Ljubljana, Jamova 39, 610000, Ljubljana, Slovenia

Received 1 April 1999; received in revised form 30 June 1999; accepted 6 July 1999

Abstract

The influence of Al_2O_3 additive on the electrical properties and microstructure of (Na,Mn)-doped WO₃ ceramics was studied. Addition of Al_2O_3 shifts the current–voltage characteristics to higher fields and inhibits the grain growth of the WO₃-based non-Ohmic ceramics. The non-linearity coefficient of the current–voltage characteristics of the Al_2O_3 -doped WO₃ ceramics increases with sintering temperature and attains a maximum value at 1250°C. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Electrical properties; Grain growth; Microstructure-final; Varistors; WO₃; Al₂O₃

1. Introduction

The WO₃-based ceramic materials are interesting mainly as candidates for low voltage varistors. Tungsten oxide ceramics doped by Na₂O and MnO₂ exhibit non-linear current–voltage characteristics.¹ The addition of Na₂O has been found to be essential for forming non-Ohmic behaviour. The influence of Al₂O₃,MnO₂,Co₃O₄ and Na₂O on the sintering capacity of WO₃ ceramics was investigated in Ref. 2. The effect of the addition of small amounts of Li₂O,V₂O₅,Co₂O₃ and La₂O₃ on the electrical properties of WO₃ ceramics has been studied by Kaneki et al.³

In this study we shall present the effect of Al_2O_3 additive on the varistor characteristics and microstructure of (Na,Mn)-doped WO₃ ceramics.

2. Experimental

A series, of specimens, in the WO₃–Na₂O, WO₃–Na₂O-MnO₂, WO₃–Na₂O–Al₂O₃ and WO₃–Na₂O–MnO₂–Al₂O₃ systems were prepared by conventional ceramic techniques. Reagent grade powders of WO₃, Na₂CO₃, MnO₂ and Al₂O₃ were mixed in the desired proportion using alcohol as a medium. After drying, the mixture was pressed into disks of 6 mm diameter at a pressure of 200 MPa. The samples were sintered at 1100–1300°C in air for 2 h.

For electrical measurements liquid In–Ga alloy contacts were used as electrode material. Current–voltage (I–V) measurements were made in d.c. mode in the current range up to 1 mA at room temperature. The nonohmic I–V characteristics were expressed empirically by $I=kV^{\alpha}$, where α is non-linear coefficient and k is a constant. The non-linear coefficient was calculated in the current density ranges of 0.1–1 mA cm⁻². The specific conductivity (σ_0) was measured at an electric field of 1 V mm⁻¹ in the ohmic region. For breakdown field (E_1) the field at the current density of 1 mA cm⁻² was taken.

Sintered samples were examined by scanning electron microscopy (SEM).

3. Results and discussion

Fig. 1 shows the I–V characteristics for WO₃ ceramics of different compositions. Electrical parameters and average grain sizes for the obtained samples are listed in Table 1. It can be seen that the Al₂O₃ dopant decreases the leakage current at the ohmic region and increases the breakdown field of the (Na,Mn)-doped samples. From analysis of the obtained data it becomes evident that the breakdown field is closely correlated with the grain size and, therefore, the non-ohmic behavior of the WO₃ ceramics is a grain boundary property. Samples containing 3 mol% MnO₂ have a lower breakdown voltage, probably because of the great amount of a liquid phase, which seems to enhance grain growth in this system.

^{*} Corresponding author.

^{0955-2219/00/\$ -} see front matter \odot 2000 Elsevier Science Ltd. All rights reserved. PII: S0955-2219(99)00194-6

Fig. 1. I–V characteristics of different WO_3 ceramics sintered at 1250°C for 2 h (mol%): (1) WO_3 –0.5Na₂O; (2) WO_3 –0.5Na₂O–0.5Al₂O₃; (3) WO_3 –0.5Na₂O–0.5MnO₂; (4) WO_3 –0.5Na₂O–0.5MnO₂–0.5Al₂O₃; (5) WO_3 –0.5Na₂O–3.0MnO₂–0.5Al₂O₃.

Table 1 Electrical parameters of the WO_3-based varistor ceramics sintered at $1250^{\circ}C$ for 2 h

Content mol%	$\sigma_0 ~{ m Ohm^{-1}} \ { m cm^{-1}}$	α	$E_1 \text{ Vmm}^{-1}$	Average grain
				size µm
1. WO ₃ -0.5Na ₂ O	1.1×10^{-7}	5.5	9	30
2. WO ₃ -0.5Na2O-0.5 Al ₂ O ₃	1.8×10^{-7}	5.3	27	6
3. WO ₃ -0.5Na ₂ O-0.5 MnO ₂	2.6×10^{-7}	5.8	6.5	35
4. WO ₃ –0.5Na ₂ O–0.5 MnO ₂ –0.5Al ₂ O ₃	6.3×10^{-7}	5.3	27	8
5. WO ₃ -0.5Na ₂ O-3.0 MnO ₂ -0.5Al ₂ O ₃	7.1×10^{-7}	6.0	17	15

The microstructures of WO₃–Na₂O and Al₂O₃-doped WO₃ ceramic were shown in Fig. 2. Obviously, addition of Al₂O₃ inhibits the grain growth of the WO₃-based ceramics. The average grain size for Al₂O₃-doped samples is 6 μ m, compared with 30 μ m for the WO₃–Na₂O system.

Variation of the conductivity and nonlinear coefficient as a function of Al_2O_3 content is shown in Fig. 3. It can be seen that the conductivity decreases with increase in concentration of Al_2O_3 . But, the non-linear coefficient decreases also with addition of Al_2O_3 . The small addition of Al_2O_3 about 0.5 mol% is an optimal.

The effect of sintering temperature on the nonlinearity coefficient and the electrical conductivity was studied for the WO₃–Na₂O–Al₂O₃ ceramics and are summarised in Fig. 4. It can be seen that σ_0 decreases and α

Fig. 2. A typical scanning electron micrograph of WO_3 -O.5Na₂O, (A) and WO_3 -O.5Na₂O-0.5Al₂O₃, (B) ceramics sintered at 1200°C for 2 h.

Fig. 3. Conductivity (1) and non-linear coefficient (2) of WO_3 ceramics as function of the Al_2O_3 content.

increases with increase in the sintering temperature and attains the maximum value at the 1250°C. It was also observed that the breakdown field decreases from 64 to 22 V mm⁻¹ on increasing the T_s .

Fig. 4. Conductivity (1) and non-linear coefficient (2) of WO_3 - Na_2O - Al_2O_3 ceramics as function of sintering temperature. The sintering time is 2 h.

4. Conclusion

Based on the experimental data, the following conclusions can be drawn:

1. Addition of Al₂O₃ inhibits the grain growth of the WO₃-based ceramics.

- 2. The Al₂O₃ dopant increases the breakdown field of the WO₃ non-ohmic ceramics. The breakdown field is about inversely proportional to the grain size.
- 3. The non-linearity coefficient of the current–voltage characteristics of the Al₂O₃-doped WO₃ ceramics increases with sintering temperature and attains a maximum value at 1250°C.

Acknowledgements

The study of V. O. Makarov at the J. Stefan Institute was enabled by the financial support of the Ministry for Science and Technology of the Republic of Slovenia.

References

- 1. Makarov, V. O. and Trontelj, M., Novel varistor material based on tungsten oxide. J. Mater. Sci. Lett., 1994, **13**, 937–939.
- Makarov, V. O. and Trontelj, M., Sintering and electrical conductivity of doped WO₃. J. Eur. Ceram. Soc., 1996, 16, 791–794.
- Kaneki, N., Hara, H. and Shimuzu, T., Effect of atmosphere on resistivity of WO₃ ceramics. *J. Am. Ceram. Soc.*, 1976, **59**, 368– 369.